
Abstract. Relativistic e�ects strongly in¯uence the nu-
clear quadrupole coupling of atoms, molecules or solids.
As ®rst shown by Casimir in 1936, in the atomic or
single-centre case, for the two states j � l� s; three
radial electric-®eld-gradient (EFG) integrals, R��;R�ÿ;
and Rÿÿ; must be introduced. The relativistic correction
factors, de®ned for operator q̂ as

C � hRjq̂jRi=hNRjq̂jNRi;
have quite di�erent values for the three combinations.
For example, for the Bi atom ground state 6p shell at
Dirac-Fock(DF) level, C�� and C�ÿ are 1.28 and 1.91,
respectively, while qÿ;ÿ vanishes entirely, due to j � 1=2.
There also is a dependence on the n quantum number. In
addition to these relativistic changes of the integrals (at
the atomic centre), spin-orbit tilting e�ects may occur,
even at light atoms, bonded to heavy ones.

We have produced DF-level, EFG integrals for the
elements 1±93, investigated the hydrogen-like, n-depen-
dent correction factors, C and used simple molecular-
orbital models for estimating the spin-orbit tilting ef-
fects.

Key Words: Relativistic corrections ± Nuclear
quadrupole coupling ± Electric ®eld gradients ±
Spin-orbit coupling

1 Introduction

Relativistic e�ects on nuclear electric quadrupole cou-
pling in atomic spectra were ®rst analysed in 1936 by
Casimir [1]. Using a Dirac wave function where a
Coulombic inner part is ®tted to a quantum-defect
treatment of the outer part, he derived for the diagonal
and o�-diagonal radial integrals hrÿ3i of the two states j
= l� s, the diagonal and o�-diagonal correction factors
C��, C�ÿ and Cÿÿ (denoted by him as R0, S and R00,

respectively). A numerical table of these, n-independent
factors was published in 1958 by Kopfermann [2]. An
alternative is to calculate these correction factors using
hydrogen(H)-like, Dirac-Coulomb functions. Expres-
sions in closed form appear in Ref. [3] for the diagonal
case (`��' and `ÿ;ÿ'). Numerical examples have also
been published for p elements [3±5] and for d, f and g
elements [4,6].

The atomic one-valence-electron [7] and many-elec-
tron [8] cases were further analysed. The latter work is,
in particular, applicable to cases where spin-orbit e�ects
cause an EFG, q, for atoms with a half-®lled shell � p3,
d5, f 7�, where the nonrelativistic value vanishes. The
latest review on electric quadrupole coupling in atoms,
including the relativistic aspects, seems to be that by
Lindgren and RoseÂ n [9]. They also give a number of
radial integrals, calculated at the Dirac-Slater level.
Desclaux's tables [10] list the average-of-con®guration,
DF diagonal integrals for the atomic ground states of
the elements 1±120. Further integrals, for both p and d
elements, are given by Lindgren and RoseÂ n [9]. Data for
the lanthanide [11] and actinide [12] ions also exist.

For molecules, Townes and Dailey [13] introduced a
simple analysis based on one-centre contributions only
and a population analysis. These integrals can be cor-
rected using a quasirelativistic (spin-orbit-averaged)
combination of Casimir's factors. The limitations of this
simple model, as compared with full, all-electron treat-
ments, were illustrated by Balakina et al. [14].

Dunlap [15,16] considered the actinide coupling in
actinyl ions, under the hypothesis that it comes from the
5f shell, using the theory of Sandars and Beck [8].
Larsson and PyykkoÈ [17] proposed the possibility that
the hole in the 6pr �6p 3

2
�mj � 1

2�� shell su�ces to explain
the observed trend.

At ab initio level, a perturbative study of relativistic
e�ects on the halogen ®eld gradients in HCl, HBr and
HI [18,19] and BrCl [20] has been published by Sadlej
and coworkers. In the future it is hoped that fully rela-
tivistic all-electron data will be reported for this prop-
erty. No such data exist yet.

Quasirelativistic pseudopotential and MSXa calcula-
tions on gold halide systems by Schwerdtfeger et al. [21]
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show that relativistic electronic e�ects at constant ge-
ometry increase the Cl nuclear quadrupole coupling
constant (NQCC), presumably via the increased elec-
tronegativity of gold. The qAu is made more negative at
the same time. No obvious relationship exists between
correction factors of the present type and these results.

Quasirelativistic band-structure calculations of solids
have now reached a point where they can give, combined
with experimental coupling constants, competitive values
of Q. An example is the MoÈ ssbauer state of 57Fe [22]. The
data on the relativistic changes are more limited [23].

The present paper has several aims. Currently, the
best way of determining nuclear quadrupole moments,
Q, for the lighter elements is to combine experimental
quadrupole coupling constants, eqQ=h, with good ab
initio calculations of q for atoms or small molecules [24].
The present standard values [25] for the ®rst 25 elements
indeed come from that source. It is interesting to know
how to correct these results for relativistic e�ects. Sec-
ondly, we would like to get a feeling for the spin-orbit
tilting e�ects in molecules at the semiempirical level. We
therefore derive an expression for the o�-diagonal Dir-
ac-Coulomb case and report both diagonal and o�-di-
agonal DF-level integrals for the elements up to 93Np.

2 Theory

The 1=rne Coulomb interaction between the nuclear and
electronic (and other external) charge distributions is

Ene �
Z

dVn

Z
dVeqnqe

1

rne
: �1�

Using the multipole expansion

1

rne
� 4p

X1
l�0

Xl

m�ÿl

1

2l� 1

rl
<

rl�1
>

� Y m�
l �hn;/n�Y m

l �he;/e�;

�2�
and assuming that the nuclear radius, rn < re, we can
write [26,27] the interaction energy in Eq. (1) as

Ene �
X
l;m

Am�
l Bm

l ; �3�

where

Am
l �

h 4p
2l� 1

i1=2 Z
qnrl

nY m
l dVn; �4�

Bm
l �

h 4p
2l� 1

i1=2 Z
qerÿlÿ1

e Y m
l dVe: �5�

The external charge distribution can be regarded as
space-®xed for molecules and solids. Its l � 2;m � 0
part will directly correspond to the EFG, q:

2B0
2 � hrÿ32P 0

2 �cos he�i � h�3z2 ÿ r2�=r5i � qzz � q: �6�
The nuclear quadrupole moment is de®ned for a

nuclear spin I as

Q � hII j 3z2 ÿ r2 j IIi: �7�

The ®nal nuclear quadrupole Hamiltonian becomes [26]

HQ � eqQ
4I�2I ÿ 1� �3I2z ÿ I�I � 1� � 1

2
g�I2� � I2ÿ��; �8�

where the asymmetry parameter is de®ned as

g � �qxx ÿ qyy�=qzz; �9�
each component corresponding to Eq. (6), in the princi-
pal axis system of the tensor q. This derivation is
valid for relativistic or nonrelativistic external charge
densities, qe.

For the latest compilation of nuclear quadrupole
moments, see Ref. [25].

In the atomic or one-centre case, the atomic orbitals
at the nucleus considered will be of the type j � l� 1

2 : It
was already noted by Casimir [1] that one will then need
three di�erent radial integrals for l > 1 (for p electrons,
the qÿÿ disappears):

q�� � hl� 1

2
j q j l� 1

2
i �10�

q�ÿ � hl� 1

2
j q j lÿ 1

2
i �11�

qÿÿ � hlÿ 1

2
j q j lÿ 1

2
i: �12�

Sandars and Beck [8] considered the same problem
for atoms in SLJ coupling and Dunlap [15] adopted their
theory for transition-metal compounds, where J is well
de®ned. Then the e�ective Hamiltonian is written as a
scalar product of a nuclear and electronic irreducible
tensor,

H eff
Q � T2

n � T2
e ; �13�

where the l � 2 electronic tensor operator can be vector
coupled from the (SL)J combinations (02)2, (13)2 and
(11)2. The latter two contributions reduce to zero at the
nonrelativistic limit. The ®rst one also corresponds to
the quasirelativistic correction factor

C�l; Z�� �l� 2��2lÿ 1�R�� ��lÿ 1��2l� 3�Rÿÿ�6R�ÿ
�2l� 1�2RNR

:

�14�
Here the radial integrals

Rab �
Z1
0

�g�agb � f �a fb�rÿ3�r2dr�; �15�

where the indices a; b carry both n, l and j. For a given
combination na, la, nb, lb, the j-values are given by the
combinations R��, R�ÿ, Rÿ� and Rÿÿ. Here the lower
indices give the sign of j � l� 1

2 for the bra and ket
vectors, a and b, respectively, analogously with Eqs.
(10±12).

We ®nd the same result for a quasirelativistic treat-
ment of one-centre contributions of a molecule.

In a simple, one-centre treatment of q in molecules,
using the orbital
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jwn;l;ml
ijv1

2;ms
i � al�1

2
j/n;l�1

2;ml�ms
i � alÿ1

2
j/n;lÿ1

2;ml�ms
i
�16�

there will also be a mixed term denoted as R�ÿ.
It is of interest to see what e�ect, if any, these o�-

diagonal terms have. In the absence of spin-orbit split-
ting [hereafter called the quasirelativistic (QR) limit] the
coe�cients al�1

2
and alÿ1

2
can be determined very easily. If

spin-orbit coupling is included both the coe�cients and
the radial hrÿ3i integrals, R; will deviate from their QR
averages. We call these changes of q; spin-orbit tilting.

First, treating the quasirelativistic case, the matrix
elements over the angular portion of the q̂ operator are
calculated and combined with the r-dependent part cal-
culated by one of the methods described in Sect. 3. Once
this is carried out for both the relativistic and nonrela-
tivistic case and the ratio taken, a series of formulae de-
pending on l and mj are derived. Consider, for instance, a
pp�1=2� orbital. At the quasirelativistic limit we have

jwn;l�1;ml�1;mj�1
2
i �

���
2

3

r
jp1

2
�1
2
�i �

���
1

3

r
jp3

2
�1
2
�i: �17�

We then express the expectation value q as a sum of
radial integrals, Rab, each multiplied by an angular in-
tegral Aab. The appropriate angular coe�cients for Eq.
(17) are Aÿÿ � 0, A�ÿ � ÿ 2

��
2
p
5 and A�� � 2

5. The A val-
ues are calculated using the appropriate coe�cients from
Eq. (17) and integrals over the angular portion of q. The
total answer for Eq. (17) becomes

qp1
2

� ÿ 8

15
R�ÿ � 2

15
R��: �18�

Combining Eq. (18) with the appropriate nonrela-
tivistic value i.e.

qNR;p � ÿ 2
5

RNR �19�

a correction factor is obtained. Two methods for ob-
taining the radial integrals, R, are described in Sect. 3.
Examination of Eq. (18) reveals that for p orbitals
the o�-diagonal contribution in quasirelativistic hrÿ3i
expectation values is more important than the diagonal
contribution. Averaging the two ml;ml � 1

2 values re-
vealed that R is independent of ml. The ratios derived for
l � 1; 2; 3 were in agreement with those calculated by the
formula of Sandars and Beck [8], see Eq. (14). One
further point of interest was found while deriving these
formulae. The fd orbital contributes nothing to the EFG at
the nucleus owing to its octahedral symmetry. However,
as soon as the population in the f d5

2
and f d7

2
orbitals

becomes di�erent from the nonrelativistic limit an EFG
is created.

3 Atomic matrix elements

3.1 Dirac-Coulomb case

Perhaps the simplest way to obtain relativistic correc-
tions for EFGs is to calculate the expectation values of

rÿ3 with the solution of the one-electron Dirac equation
and the solution of the one-electron SchroÈ dinger equa-
tion and then take the ratio of these two results. The
algebraic expression for the diagonal values of hrÿ3iNR is
[29]

hrÿ3inl �
Z3

n3l�l� 1��l� 1
2�
: �20�

The more general, o�-diagonal expression has re-
cently been published [30], and agrees with our results,
provided that in their Eq. (3) the expression nl2�1

1 nl1�1
2 is

replaced by nl2�1�k
1 nl1�1�k

2 . To our knowledge, no such
expression exists for solutions of the Dirac equation,
though the diagonal solution was ®rst worked out in
1939 [31]. The starting point for the more general ex-
pression is the form of the H-like, Darwin-Gordon so-
lution of the Dirac equation, as given by Davis [31] and
Hill and Landsho� [32]; see these references for the
notation used.

fs�r� � isC�1ÿ s��12eÿkr�2k�crcÿ1�v1;s ÿ v2;s�; �21�

Gs�r� � C�1� s��12eÿkr�2k�crcÿ1�v1;s � v2;s�; �22�
where

C � k�n0!�12�2Z�C�2c� n0 � 1��12 �23�
� � Ea2 � �1� Z2a2=�n0 � c�2�ÿ1

2 �24�
k � �1=a��1ÿ �2�12 �25�

c � �j2 ÿ Z2a2�12 �26�
n0 � nÿ J ÿ 1

2
�27�

v1;s � �2c� n0��c� n0 ÿ j��ÿ1
2�L2cn0ÿ1�2kr� �28�

v2;s � ÿs�c� n0 ÿ j��ÿ1
2L2cn0 �2kr�: �29�

Here s is the negative of the sign of j. Lb
a�z� is the

generalized Laguerre polynomial. Atomic units are used
throughout. When s � �1 fs corresponds to the small
component and Gs to the large one. When s � ÿ1 the
situation is reversed.

We are interested in the totally general situation, i.e.

hrkiab �
Z1
0

�G�aGb � f �a fb�rk�2dr �30�

Note that here the states a and b may have di�ering n
and l. Considering the de®nitions in Eqs. (21±29), they
correspond to the case s1 � s2. This is the case that we
shall treat here. In the case where s1 � ÿs2 the argument
is the same but a few signs are changed. The generalized
Laguerre polynomial is written according to its de®nition,

Lc
n�r� �

Xn

i�0
�ÿ1�i n� c

nÿ i

� � �2kr�i
i!

: �31�

Once this is done, all that is required is the use of the
integral
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Z1
0

rmÿ1eÿlrdr � 1

lm
C�m� �32�

and some algebra to arrive at the ®nal equation

hrkiab � CaCb2
�ca�cb��ka�ca�kb�cb

� sasb�1ÿ sa�a�
1
2�1ÿ sb�b�

1
2 � �1� sa�a�

1
2�1� sb�b�

1
2

� �h
� �2ca � n0a��2cb � n0b��ca � n0a ÿ ja�a�ÿ

1
2

� �cb � n0b ÿ jb�b�ÿ
1
2�a�b

�
Xn0aÿ1
i�0

Xn0bÿ1
j�0

�ÿ1�i�j

i!j!
ki

ak
j
b

n0a � 2ca ÿ 1

n0a ÿ iÿ 1

� �
n0b � 2cb ÿ 1

n0b ÿ jÿ 1

� �
C�ca � cb � k � i� j� 1�
�ka � kb��ca�cb�k�i�j�1� � sa�1ÿ sa�a�

1
2�1ÿ sb�b�

1
2

�
ÿsb�1� sa�a�

1
2�1� sb�b�

1
2

�
� �2ca � n0a��ca � n0a ÿ ja�a�ÿ

1
2 � �cb � n0b ÿ jb�b�

1
2�a

�
Xn0aÿ1
i�0

Xn0b
j�0

�ÿ1�i�j

i!j!
ki

ak
j
b

n0a � 2ca ÿ 1

n0a ÿ iÿ 1

� �
n0b � 2cb

n0b ÿ j

� �
C�ca � cb � k � i� j� 1�
�ka � kb��ca�cb�k�i�j�1� �

�
sb�1ÿ sa�a�

1
2�1ÿ sb�b�

1
2

ÿ sa�1� sa�a�
1
2�1� sb�b�

1
2

�
��2cb � n0b��ca � n0a ÿ ja�a�

1
2

�cb � n0b ÿ jb�b�ÿ
1
2�b �

Xn0a
i�0

Xn0bÿ1
j�0

�ÿ1�i�j

i!j!
ki

ak
j
b

n0a � 2ca

n0a ÿ i

� �
n0b � 2cb ÿ 1

n0b ÿ jÿ 1

� �
C�ca � cb � k � i� j� 1�
�ka � kb��ca�cb�k�i�j�1�

� �1ÿ sa�a�
1
2�1ÿ sb�b�

1
2 � sasb�1� sa�a�

1
2�1� sb�b�

1
2

� �
� �ca � n0a ÿ ja�a�

1
2�cb � n0b ÿ jb�b�

1
2

�
Xn0a
i�0

Xn0b
j�0

�ÿ1�i�j

i!j!
ki

ak
j
b

n0a � 2ca

n0a ÿ i

� �
n0b � 2cb

n0b ÿ j

� �
C�ca � cb � k � i� j� 1�
�ka � kb��ca�cb�k�i�j�1�

#
: �33�

The integral Eq. (33) is non-singular if c is real and
ca � cb � k � 1 is positive. The ®rst condition requires
that Z �j j j aÿ1. To satisfy the second condition in the
most singular case of j ja j� 1; j jb j� 2, for a point
nucleus and k � ÿ3, this implies that the nuclear charge
Z � 132.

If we have a � b, i.e. the diagonal integral, then the
equation reduces to that given by Davis [31].

Using Eq. (33) and the equation for the nonrelativ-
istic expectation value of rÿ3, relativistic corrections for
a nonrelativistic expectation value can be determined.
These corrections can be compared with those obtained
from Dirac-Fock (DF) and Hartree-Fock (HF) values in
the next section. Of special interest in the dependence of
the correction on the quantum number n.

3.2 Dirac-Fock case

The DF procedure provides a more realistic method for
calculating hrÿ3i expectation values than the simple one-
electron Dirac equation. Using the program of Desclaux
[33] the relevant matrix elements were obtained for the
valence shells of the elements with Z 1,3±93. Nonrela-
tivistic results were obtained by setting c to a very large
number. A ®nite, homogeneously charged nuclear model
was used in the calculation but no other provision was
taken for nuclear-size e�ects. For a discussion on this
point, see Fedorov et al. [34]. The results are given in
Tables 1±4

3.3 Periodic trends

The dependence of the quasirelativistic correction factor,
CQR�DF� for p electrons on the nuclear charge, Z, is
shown in Fig. 1. It follows the structureless Casimir
correction but local maxima occur at the coinage metals,
Z � 29, 47 and 79, as noted earlier for other properties
[10,35].

3.4 Dependence on n

The dependence of the individual correction factors C��
and C�ÿ on the principal quantum number, n, for the p
shells of Bi is illustrated in Fig. 2. Both DF-, H-like and
Casimir corrections are given. The DF- and H-like
trends are found to be qualitatively similar. It is not
obvious, why the innermost shell should have the
smallest C, as already found before for C��, and for
the analogous magnetic hyper®ne correction factor [3].

3.5 E�ects of atomic state and ionicity

All the corrections in Sect. 3.2 are calculated for a
particular state. The question still remains, how trans-

Fig. 1. Dirac-Fock quasirelativistic correction factors for the valence
np shells as function of the (full) nuclear charge, Z. The n-independent
Casimir correction is included
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ferable are these correction factors to other atomic states
or ionicities? If these corrections are to be used in a
molecular context, then which atomic state should be
chosen? Some examples are given in Table 5 and suggest
that, within the limits of the approach, the atomic state
hardly matters at all for CQR. The quantity C�� ÿ 1 is
close to 0 and can therefore show large percental
changes for Ne and S.

3.6 Previous atomic calculations

Sundholm and Olsen [36±43] have made calculations of
the EFG at the nucleus of several elements. Taking their
EFG and experimental NQCCs they determined accu-
rate values for the nuclear quadrupole moments of the
elements in question. As an application of our EFG
relativistic correction factors, the earlier calculations can
be re-examined and perhaps improved upon.

Although the corrections are numerically small, their
qualitative properties are interesting. The cases of B,
Na, Al and K�4p1� derive most of their EFG from a
single np3=2 electron. Similarly, Ne�2p53s�, Sÿ, Cl and
K�3p53d14s1� have a single p3=2 hole. In these cases we
recommend the C��(DF) correction factor in Table 1.
For Ne, Na and Al the original authors however used
various, substantially larger correction factors. Here it
should be emphasized that K�3p53d4s; 4F9

2
� has only the

jj-coupled con®guration at single-con®guration level

j JMi �j 9
2

Mi �j 3d5
2
i j 3p3

2
i j 4s1

2
i: �34�

Hence the EFG of this state is dominated by the 3p3
2

hole and is well described already at the HF-level. For
the 3p AO of this state, the C���DF� � 1:006, close to
the value of 1.0054, applied in the original work [43].
The CQR�DF� of the 3p shell is 1.0146 and would reduce
Q�K� by 1% .

The other atomic con®gurations require a more
careful analysis, given in Table 6.

The present recommendations are compared with
previously used C in Table 7. The case of Na deserves

special mention because of the existing discrepancy
of the muonic, atomic and molecular Q�23Na� of
100.6(2.0), 107.1(2.1) and 104.2(1.0) mb, respectively
[51]. The latest atomic value is 105.6 mb [59]. No rela-
tivistic corrections were applied in the molecular work.
If the quasirelativistic, H-like Na 3p correction factor,
1.00745, would be used to multiply the entire calculated
q, the molecular Q value would decrease to 103.4 mb.
Sundholm and Olsen's correlated, QR atomic C ÿ 1 [40]
is twice as large as the C���DF� ÿ 1 and also somewhat
larger than CQR�DF� ÿ 1. The correlation contribution
to qNa is also large. A de®nitive conclusion can therefore
not be drawn.

Similarly, for K�4p1�, the correlation contribution to
q is large and Sundholm and Olsen's [43] CQR�QR� is
comparable with the C��(DF). The C��(H) is larger,
1.0160 [3]. The C for the pure 3p contribution could
approach 1.02, see Table 1 and Table 5.

For the s1p1 3P2 states of Be and Mg, Table 6 rec-
ommends C��. For Mg, a 3P1 measurement is also
available. It is of lower accuracy and would require CQR.
For the Ca s1d1 1D2 case, CQR is recommended, as well.
With Dirac-Coulomb and DF integrals, its value is
1.0084 and 0.9490, respectively. The correlated, quasi-
relativistic value given by Sundholm and Olsen [43] is
1.0029.

The ground states of C and O have two 2p electrons
and two 2p holes, respectively. They are close to LS
coupling and a closer analysis leads to the C in Table 6
for the 3P2 term. Note that it is even larger than C�ÿ!

For the lighter elements no changes of Q follow. For
Ne, Na, Mg and Al, a very slight increase from the lit-
erature values of 101.55, 104.2, 199.4 and 140.3 mb
would be obtained, if the ``Rec.'' correction factors are
used for the total q, (see Table 7).

3.7 Previous molecular calculations

The quasirelativistic correlated results for diatomic
halides [18,20] are compared with the present CQR�DF�
in Table 8 and are found to be of the same order of
magnitude. The best agreement is obtained for the
heaviest molecule, HI. Note that the Cl in BrCl has a
heavier neighbour.

It is interesting to note that while the CQR�Cd; 5p� is
1.17, Hemmingsen and Ryde [60] only obtain a relativ-
istic increase of about 1.03 for CdF2Cl

2ÿ
2 , a natural

consequence of the ionicity and the predominant 5s
character of the bonds of Cd in the compound.

3.8 Previous solid-state calculations

We also include the available solid-state data in Table 8.
Qualitative agreement is again found for the p compo-
nent of Zr and Hf. For the d components, the atomic
C�DF� are < 1 while the solid-state results are close to
the H-like or Casimir ones. By this criterion, the d shells
of the metals contract.

Returning to Eq. (14), for p electrons with quasirel-
ativistic weights, the ratio of the ``�;ÿ'' q contributions
to ``�;�'' ones becomes 2R�ÿ=R��, approaching 2 at

Fig. 2. Dirac-Fock, Dirac-Coulomb �Z � 83� and Casimir relativistic
correction factors, C, for the np states of Bi
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Table 1. Relativistic correction factors for EFGs due to valence p electrons. g stands for ground state. The integrals R are de®ned previously. The Cs
are the correction factors to be applied to the corresponding NR R. CQR is the correction factor to be applied to a non-relativistic orbital, assuming

quasirelativistic weights for the jj-coupled basis states. DF stands for using DF expectation values, H is for using H-like expectation values calculated

using Eq. (33) and Cas denotes using Casimir's n-independent formulae [1]

Atom Conf AO R�ÿ�DF� R�� C�ÿ C�� CQR(DF) CQR(H) CQR(Cas)

H 2p1 2p 0.0416693 0.0416679 1.00006 1.00003 1.00005 1.00005 1.00006

Li 2p1 0.0585757 0.0585698 1.00007 0.99997 1.00004 1.00047 1.00052

Be 2s12p1 0.2717683 0.2716826 1.00015 0.999837 1.00005 1.00083 1.00093

B g 0.7758502 0.7753598 1.00034 0.999708 1.00013 1.00130 1.00145

C g 1.6632687 1.6614371 1.00086 0.999758 1.00050 1.00187 1.00209

N g 3.0250399 3.0198740 1.00150 0.999789 1.00093 1.00254 1.00285

O g 4.9602880 4.9480997 1.00226 0.999802 1.00144 1.00332 1.00372

F g 7.5689497 7.5435751 1.00316 0.999797 1.00204 1.00421 1.00472

Ne g 10.951873 10.903722 1.00419 0.999773 1.00272 1.00520 1.00583

Na g 17.094061 17.009389 1.00525 1.00027 1.00359 1.00630 1.00706

Mg g 25.080753 24.938260 1.00645 1.00073 1.00454 1.00751 1.00841

Na 3p1 3p 0.1700175 0.1695890 1.00451 1.00198 1.00367 1.00745 1.00706

Mg 3s13p1 0.5036400 0.5015960 1.00474 1.00066 1.00338 1.00887 1.00841

Al g 1.0945415 1.0887925 1.00570 1.00042 1.00394 1.01042 1.00988

Si g 2.0437851 2.0301115 1.00802 1.00127 1.00577 1.01211 1.01148

P g 3.2998634 3.2730157 1.01016 1.00194 1.00742 1.01392 1.01320

S g 4.8960471 4.8488783 1.01233 1.00258 1.00908 1.01587 1.01504

Cl g 6.8674938 6.7905423 1.01459 1.00323 1.01080 1.01794 1.01701

Ar g 9.1271096 9.0087387 1.01698 1.00379 1.01258 1.02015 1.01910

K g 13.204898 13.025013 1.01922 1.00533 1.01459 1.0225 1.02132

Ca g 18.124220 17.859375 1.02162 1.00670 1.01665 1.02498 1.02367

Sc g 22.974063 22.604084 1.02511 1.00860 1.01961 1.02760 1.02615

Ti g 28.386945 27.883838 1.02854 1.01031 1.02246 1.03037 1.02877

V g 34.451156 33.781229 1.03208 1.01201 1.02539 1.03327 1.03152

Cr g 40.435930 39.564914 1.03656 1.01423 1.02911 1.03632 1.0344

Mn g 48.776912 47.646406 1.03963 1.01554 1.0316 1.03951 1.03743

Fe g 57.148505 55.709420 1.04367 1.01739 1.03491 1.04286 1.04059

Co g 66.397970 64.586865 1.0479 1.01932 1.03837 1.04635 1.04389

Ni g 76.580175 74.323884 1.05232 1.02132 1.04199 1.05000 1.04734

Cu g 86.564833 83.786129 1.05770 1.02375 1.04638 1.05380 1.05093

Zn g 99.967933 96.558267 1.06177 1.02556 1.04970 1.05776 1.05468

K 4p1 4p 0.2514489 0.2489178 1.01752 1.00727 1.01410 1.02322 1.02132

Ca 4s14p1 0.6597136 0.6513837 1.01799 1.00514 1.01371 1.02578 1.02367

Co 4s14p1 1.4195843 1.3803264 1.04959 1.02057 1.03992 1.04784 1.04389

Ni 4s14p1 1.5163924 1.4707297 1.05438 1.02263 1.04379 1.05160 1.04730

Cu 4p1 0.7941934 0.7697782 1.07997 1.04677 1.06890 1.05553 1.05093

Zn 4s14p1 1.7050008 1.6448526 1.06453 1.02697 1.05201 1.05962 1.05468

Ga g 3.0670392 2.9512144 1.06096 1.02090 1.0476 1.06388 1.05857

Ge g 5.0522677 4.8440573 1.06739 1.02341 1.05273 1.06831 1.06262

As g 7.3525537 7.0257524 1.07271 1.02503 1.05682 1.07291 1.06683

Se g 9.9940951 9.5184130 1.07793 1.02662 1.06082 1.07769 1.07120

Br g 12.998923 12.339528 1.08326 1.02831 1.06494 1.08265 1.07573

Kr g 16.210825 15.330472 1.08895 1.02981 1.06923 1.08779 1.08043

Rb g 21.972716 20.788114 1.09333 1.03438 1.07368 1.09312 1.08530

Sr g 28.436958 26.876267 1.09816 1.03789 1.07807 1.09865 1.09034

Y g 34.834270 32.847982 1.10619 1.04311 1.08516 1.10437 1.09556

Zr g 41.607637 39.130549 1.11369 1.04739 1.09159 1.11029 1.10096

Nb g 48.082349 45.066704 1.12321 1.05277 1.09973 1.11642 1.10655

Mo g 55.804265 52.141876 1.13071 1.05651 1.10598 1.12276 1.11233

Tc g 64.144940 59.739770 1.13843 1.06025 1.11237 1.12932 1.11831

Ru g 73.147871 67.893185 1.14639 1.06404 1.11894 1.13610 1.12448

Rh g 82.856345 76.632794 1.15461 1.06788 1.12570 1.14311 1.13086

Pd g 92.303407 85.011450 1.16443 1.07244 1.13377 1.15036 1.13745

Ag g 104.56010 95.988671 1.17187 1.07580 1.13985 1.15784 1.14426

Cd g 118.23050 108.18564 1.1792 1.07902 1.14581 1.16558 1.15129

Rb 5p1 5p 0.4897922 0.4691272 1.08438 1.03863 1.06913 1.09354 1.08530

Sr 5s15p1 1.1947847 1.1365862 1.08285 1.03010 1.06527 1.09909 1.09034

Rh 4d85p1 1.5522867 1.4137708 1.2305 1.12070 1.19390 1.14375 1.13086

Pd 4d95p1 1.6086950 1.4568486 1.24505 1.12753 1.20588 1.15102 1.13745

Ag 5p1 1.6590100 1.4938540 1.25992 1.13449 1.21811 1.15854 1.14426

97



the nonrelativistic (NR) limit. The integrals in Table 2
would give 2.55, 2.56, 2.61 and 2.62 for Lu, Hf, Re and
Os, respectively. A full Dirac calculation on the metals
[61] gives a ratio of 2.25, 2.25, 2.36±2.38 and 2.6, res-
pectively.

4 Simple molecular models

4.1 E�ects of hybridization

4.1.1 pr and pp MOs

In Fig. 3 we illustrate the e�ect of the hybridization
between p� and p orbitals, assuming that the radial

Table 2. Relativistic correction factors for p electrons (continued). Symbols as in Table 1

Atom Conf AO R�ÿ�DF� R�� C�ÿ C�� CQR(DF) CQR(H) CQR(Cas)

Cd 5s15p1 5p 3.2321387 2.8968145 1.21334 1.08746 1.17138 1.16630 1.15129

In g 5.3470653 4.7873331 1.19964 1.07406 1.15778 1.17433 1.15855

Sn g 8.1606316 7.2743856 1.20963 1.07826 1.16584 1.18261 1.16604

Sb g 11.241814 9.9771496 1.21773 1.08074 1.17207 1.19117 1.17377

Te g 14.632777 12.929641 1.22594 1.08325 1.17838 1.20001 1.18175

I g 18.361428 16.151641 1.23463 1.08604 1.18510 1.20913 1.18999

Xe g 22.180169 19.399076 1.24424 1.08823 1.19224 1.21855 1.19849

Cs g 29.074352 25.494971 1.25028 1.09636 1.19897 1.22828 1.20727

Ba g 36.548516 32.028916 1.25744 1.10195 1.20561 1.23833 1.21632

La g 43.620316 38.108438 1.27187 1.11115 1.21830 1.24871 1.22567

Ce g 47.055785 40.853505 1.29076 1.12062 1.23405 1.25942 1.23532

Pr g 46.727762 40.179838 1.32049 1.13545 1.25881 1.27049 1.24528

Nd g 50.125780 42.808424 1.33945 1.14392 1.27427 1.28192 1.25555

Pm g 53.616823 45.468413 1.35871 1.15222 1.28988 1.29373 1.26617

Sm g 57.223172 48.175821 1.37842 1.16048 1.30577 1.30593 1.27712

Eu g 60.965630 50.943331 1.39876 1.16881 1.32211 1.31853 1.28844

Gd g 69.695495 58.030653 1.40595 1.17064 1.32751 1.33156 1.30012

Tb g 68.918339 56.693977 1.44154 1.18585 1.35631 1.34502 1.31219

Dy g 73.157970 59.691760 1.46412 1.19462 1.37429 1.35895 1.32466

Ho g 77.593716 62.779893 1.48761 1.2036 1.39294 1.37334 1.33754

Er g 82.239668 65.964198 1.51205 1.21281 1.41231 1.38823 1.35086

Tm g 87.109997 69.250466 1.53748 1.22226 1.43241 1.40364 1.36463

Yb g 92.220572 72.644666 1.56397 1.23198 1.45331 1.41958 1.37886

Lu g 104.37438 81.927899 1.5721 1.23400 1.45940 1.43608 1.39359

Hf g 117.45320 91.762232 1.58415 1.23765 1.46865 1.45317 1.40883

Ta g 131.56815 102.23186 1.59919 1.24261 1.48033 1.47087 1.42460

W g 146.75487 113.35078 1.61636 1.24845 1.49372 1.48922 1.44093

Re g 163.06072 125.13330 1.63526 1.25491 1.50848 1.50823 1.45784

Os g 180.53776 137.59736 1.65564 1.26185 1.52437 1.52795 1.47537

Ir g 199.25832 150.76445 1.67743 1.26919 1.54135 1.54842 1.49354

Pt g 216.93767 162.73136 1.70765 1.28096 1.56542 1.56965 1.51238

Au g 238.16571 177.23843 1.73180 1.28877 1.58412 1.59171 1.53193

Hg g 263.57151 194.73288 1.75020 1.29309 1.59783 1.61462 1.55222

Cs 6p1 6p 0.7640284 0.6853768 1.22763 1.10125 1.18551 1.22752 1.20727

Ba 6s16p1 1.7896053 1.5874625 1.22174 1.08374 1.17574 1.23753 1.21632

Ir 6s16p1 7.6757975 5.4731816 1.81421 1.29361 1.64068 1.54613 1.51238

Pt 6p1 5.2422454 3.6095642 2.15694 1.48517 1.93301 1.56725 1.53193

Au 6p1 5.5148385 3.7225656 2.23098 1.50593 1.98930 1.58918 1.53193

Hg 6s16p1 9.2805756 6.2405709 1.96703 1.3227 1.75226 1.61197 1.55222

Tl g 14.136952 9.5458466 1.87166 1.26382 1.66906 1.63565 1.57330

Pb g 20.775574 13.995243 1.89084 1.27374 1.68514 1.66028 1.59520

Bi g 27.785598 18.621763 1.90686 1.27797 1.69723 1.68591 1.61797

Po g 35.320485 23.518398 1.92568 1.28223 1.71121 1.71260 1.64167

At g 43.463609 28.727556 1.94763 1.28730 1.72752 1.74042 1.66633

Rn g 51.638634 33.746810 1.97331 1.28960 1.74541 1.76942 1.69203

Fr g 66.152497 43.668858 1.97109 1.30116 1.74778 1.79968 1.71882

Ra g 81.544171 53.855762 1.99727 1.31909 1.77121 1.83128 1.74677

Ac g 96.683904 63.559428 2.04455 1.34407 1.81105 1.86432 1.77595

Th g 112.33382 73.324099 2.08819 1.36304 1.84647 1.89887 1.80645

Pa g 117.59720 75.143162 2.19206 1.40070 1.92828 1.93505 1.83836

U g 128.12390 80.608955 2.2617 1.42294 1.98211 1.97297 1.87175

Np g 138.98650 86.023437 2.33282 1.44386 2.03650 2.01274 1.90676

Fr 7p1 7p 1.8220838 1.2895277 1.9029 1.34672 1.71751 1.79429 1.71882

Ra 7s17p1 4.0610252 2.7837348 1.84841 1.26704 1.65464 1.82563 1.74677
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Table 3. Relativistic correction factors for EFGs due to valence d electrons in the atomic ground state. Symbols are as for Table 1

Atom AO Rÿÿ(DF) R�ÿ R�� Cÿÿ C�ÿ C�� CQR(DF) CQR�H� CQR(Cas)

Sc 3d 1.4146461 1.4054375 1.4014424 0.98966 0.98322 0.98043 0.98369 1.01214 1.01263

Ti 1.9632135 1.9483127 1.9419411 0.99398 0.98644 0.98321 0.98700 1.01334 1.01387

V 2.5809984 2.5584220 2.5488254 0.99697 0.98825 0.98454 0.98891 1.01460 1.01518

Cr 2.8389762 2.8076318 2.7923752 0.99999 0.98895 0.98358 0.98946 1.01591 1.01655

Mn 4.0669089 4.0209342 4.0013748 1.00176 0.99044 0.98562 0.99130 1.01729 1.01797

Fe 4.9502757 4.8873644 4.8604993 1.00399 0.99123 0.98578 0.99219 1.01872 1.01946

Co 5.9362597 5.8519772 5.8158103 1.00621 0.99192 0.98579 0.99298 1.02021 1.02101

Ni 7.0313683 6.9204565 6.8725968 1.00847 0.99257 0.98570 0.99373 1.02177 1.02263

Cu 7.5999011 7.4540592 7.3828893 1.01275 0.99331 0.98383 0.99420 1.02338 1.0243

Zn 9.5749734 9.3912227 9.3109623 1.01322 0.99378 0.98528 0.99514 1.02506 1.02604

Y 4d 1.6778162 1.6198831 1.6004486 0.98017 0.94632 0.93497 0.95035 1.05271 1.04465

Zr 2.3998290 2.3108652 2.2814018 1.00101 0.96391 0.95162 0.96840 1.05556 1.04705

Nb 2.7752643 2.6591763 2.6169743 1.01641 0.97389 0.95844 0.97838 1.05850 1.04953

Mo 3.5692452 3.4107095 3.3539893 1.02568 0.98013 0.96383 0.98506 1.06153 1.05207

Tc 4.4312172 4.2226703 4.1491312 1.03326 0.98463 0.96748 0.99002 1.06464 1.05469

Ru 5.3681046 5.1008933 5.0078967 1.03993 0.98816 0.97015 0.99401 1.06784 1.05738

Rh 6.3855634 6.0499157 5.9344907 1.04608 0.99110 0.97219 0.99742 1.07113 1.06015

Pd 6.8865543 6.4780584 6.3220573 1.05841 0.99562 0.97165 1.00169 1.07452 1.06298

Ag 8.6068077 8.1037279 7.9336804 1.05771 0.99588 0.97499 1.00316 1.07799 1.06589

Cd 10.494951 9.8742299 9.6822686 1.05965 0.99698 0.97760 1.00523 1.08155 1.06889

La 5d 2.3592101 2.1548951 2.1009653 1.01577 0.92780 0.90458 0.94129 1.12688 1.09935

Ce 2.5012290 2.2745777 2.2143264 1.02385 0.93107 0.90641 0.94521 1.13181 1.10315

Gd 3.1464787 2.7811384 2.6808562 1.04244 0.92140 0.88818 0.93935 1.16394 1.12787

Lu 3.5643885 3.0337208 2.8852979 1.02755 0.87457 0.83178 0.89687 1.20750 1.16110

Hf 5.0108167 4.2426863 4.0314048 1.09658 0.92848 0.88225 0.95336 1.21430 1.16627

Ta 6.4379917 5.4233849 5.1489994 1.13447 0.95568 0.90733 0.98254 1.22126 1.17155

W 7.9136768 6.6322021 6.2911693 1.16123 0.97319 0.92315 1.00182 1.22837 1.17693

Re 9.4638192 7.8897004 7.4770648 1.18263 0.98592 0.93436 1.01625 1.23565 1.18244

Os 11.102649 9.2062866 8.7161760 1.20106 0.99591 0.94289 1.02790 1.24308 1.18806

Ir 12.839792 10.588383 10.014264 1.21768 1.00416 0.94971 1.03781 1.25069 1.1938

Pt 13.886130 11.315482 10.622105 1.24836 1.01726 0.95493 1.05205 1.25847 1.19966

Au 15.696720 12.715750 11.920751 1.26335 1.02343 0.95944 1.05989 1.26642 1.20563

Hg 18.571663 15.049049 14.179195 1.26280 1.02328 0.96413 1.06196 1.27455 1.21174

Ac 6d 3.4267189 2.6422355 2.4795558 1.04798 0.80806 0.75831 0.85136 1.36821 1.27278

Th 4.7731643 3.6483070 3.4136300 1.14813 0.87756 0.82111 0.92622 1.37871 1.28029

Pa 4.2228737 3.1980146 2.9805967 1.13145 0.85686 0.79860 0.90578 1.38947 1.28795

U 4.5242227 3.3953530 3.1537644 1.15149 0.86418 0.80269 0.91511 1.40046 1.29578

Np 4.7898001 3.5619659 3.2972096 1.16559 0.86680 0.80237 0.91953 1.41170 1.30378

Table 4. Relativistic correction factors for EFGs due to valence f electrons in the atomic ground state. Symbols are as for Table 1

Atom AO Rÿÿ(DF) R�ÿ R�� Cÿÿ C�ÿ C�� CQR(DF) CQR(H) CQR(Cas)

Ce 4f 4.4348469 4.3639694 4.3286546 0.92075 0.90604 0.89871 0.90771 1.03225 1.04766

Pr 4.4779477 4.3939017 4.3478175 0.91603 0.89883 0.88941 0.90034 1.0334 1.04938

Nd 5.0984464 4.9975157 4.9427009 0.92605 0.90772 0.89776 0.90937 1.03458 1.05113

Pm 5.7362929 5.6163742 5.5516328 0.93365 0.91413 0.90359 0.91592 1.03578 1.05291

Sm 6.3967877 6.2555378 6.1795436 0.93976 0.91901 0.90785 0.92094 1.03700 1.05472

Eu 7.0834459 6.9182743 6.8295571 0.94490 0.92287 0.91104 0.92493 1.03824 1.05657

Gd 8.3595833 8.1702236 8.0764834 0.95298 0.93140 0.92071 0.93387 1.03951 1.05845

Tb 8.5451611 8.3233193 8.2041142 0.95338 0.92863 0.91533 0.93094 1.04080 1.06037

Dy 9.3241049 9.0689431 8.9316216 0.95703 0.93084 0.91675 0.93327 1.04211 1.06233

Ho 10.137282 9.8450619 9.6874493 0.96043 0.93275 0.91782 0.93530 1.04344 1.06432

Er 10.986190 10.652835 10.472544 0.96364 0.93440 0.91859 0.93708 1.04480 1.06634

Tm 11.872242 11.493308 11.287715 0.96672 0.93586 0.91912 0.93865 1.04618 1.0684

Yb 12.796802 12.367450 12.133679 0.96969 0.93716 0.91944 0.94007 1.04759 1.07049

Lu 14.398800 13.932292 13.695315 0.97244 0.94093 0.92493 0.94434 1.04902 1.07263

Pa 5f 4.9064633 4.6029063 4.4755050 0.82389 0.77292 0.75153 0.78073 1.10585 1.12329

U 5.7088706 5.3496348 5.2027738 0.85247 0.79883 0.77690 0.80734 1.10838 1.12625

Np 6.5099835 6.0914825 5.9236853 0.87367 0.81751 0.79499 0.82665 1.11095 1.12926
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integrals R�ÿ and R�� have their relativistic or non-
relativistic HF values for Bi.

For a QR ratio of the two coe�cients, the same Rel-
ativistic/NR ratio is obtained for r as for the average of
the two p orbitals, 1:69723 � �2:1164908� 1:27797� =2.

For pure p orbitals �C� p1=2� � 0�, a smaller ratio is
obtained. It is identical with that for the p�mj � 3=2�
one. The q contribution vanishes for p orbitals if C� p1=2�
is 0.23057 or 3

9, for relativistic and NR-radial integrals,
respectively.

The curves with NR-integrals in Fig. 3 can be used for
understanding spin-orbit tilting e�ects on a light element.

4.1.2 d AOs

In Fig. 4 we show the coe�cient dependence of d AO
contributions assuming the three relativistic or non-
relativistic DF 5d integrals for Au. As seen from Table 3,
the CQR(DF) equals 1.060 for the atomic ground state.
The same value is obtained in Fig. 4 as the ratio of the

Table 5. Correction factor as a

function of state/ionicity. g stands

for ground state

System State AO R�ÿ R�� C�ÿ C�� CQR�DF�

Ne g 2p 10.951873 10.903722 1.00419 0.99977 1.00272

Ne 2p53s1 12.500306 12.451743 1.00412 1.00022 1.00282

S g 3p 4.8960471 4.8488783 1.01233 1.00258 1.00908

Sÿ g 4.0739840 4.0262490 1.01270 1.00083 1.00874

K g 13.204898 13.025013 1.01922 1.00533 1.01459

K 3p54s2 14.696568 14.508362 1.01903 1.00598 1.01468

K 4p1 13.256353 13.076826 1.01927 1.00547 1.01467

Ca g 18.124220 17.859375 1.02162 1.00670 1.01665

Ca 3p54s24p1 19.964067 19.687063 1.02155 1.00738 1.01683

Ca 4s14p1 18.186163 17.921598 1.02168 1.00681 1.01672

Cu g 86.564833 83.786129 1.05770 1.02375 1.04638

Cu 4p1 86.494915 83.720806 1.05761 1.02369 1.04630

Zn g 99.967933 96.558267 1.06177 1.02556 1.04970

Zn 4s14p1 99.971216 96.565017 1.06172 1.02555 1.04967

Ca 3p54s24p1 4p 1.1250398 1.1103262 1.01813 1.00481 1.01369

Ca 4s14p1 0.6597136 0.6513837 1.01799 1.00514 1.01371

Ag g 104.56010 95.988671 1.17187 1.07580 1.13985

Ag 5p1 104.54448 95.987474 1.17176 1.07585 1.13979

Cd g 118.23050 108.18564 1.17920 1.07902 1.14581

Cd 5s15p1 118.29751 108.26378 1.17918 1.07916 1.14584

Au g 5p 238.16571 177.23843 1.73180 1.28877 1.58412

Au 6p1 238.20863 188.39043 1.73191 1.3697 1.61117

Table 6. The jj-coupled parent-

age of various LS-coupled atomic

terms at the NR limit and the

relativistic corrections, C, recom-
mended for their NQCC for light

elements. The symbols l� and l
stand for j � lÿ 1

2 and j � l� 1
2,

respectively. The CQR corrections

correspond to Eq. (14)
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two r curves for the QR coe�cients. It also is obtained as
the average of the two 5dp ratios or the two 5dd ratios.

4.1.3 f AOs

In Fig. 5 we show the coe�cient dependence of the 5f q
assuming the DF integrals for U. Note in this case the
zero contribution from the f d orbital for NR integrals
and (QR or NR) coe�cients.

4.2 The Townes-Dailey model

In this model [13], only one-centre contributions, from
the nucleus in question are considered, and the NQCC is

expressed in terms of a one-electron radial integral and a
combination of the occupation numbers. For p-elec-
trons,

qmol � Up < p j q̂ j p >; �35�
Up � nz ÿ nx � ny

2
: �36�

Obviously, the Up can be multiplied by the corre-
sponding quasirelativistic correction factor. The pro-
posed [13] Casimir corrections [1] are still a good choice.

The Townes-Dailey model can easily be extended to
jj or intermediate coupling. Consider the EFG at the
nucleus of a main group element in a simple valence-
electrons-only, one-centre model. In a molecular envi-
ronment the relevant orbitals can be represented by

Table 7. Some previously used

relativistic correction factors. g

stands for the ground state, Exp.

and Calc. are the experimental

and theoretical references, respec-

tively. Orig. is the relativistic cor-

rection factor originally applied

and Rec. the one recommended in

Table 6. Q in mb � 10ÿ31m2

System State Exp. Shell Orig. Calc. Rec. Conclusion

Be 2s12p1 (3P2) [44] 2p 1.0005a [36] 0.999837b PRVUi

B g (2P3
2
) [45] 2p 1.0001c [37] 0.999708b PRVU

C g (3P2) [46] 2p 1.0010a [38] 1.00123h PUVRj

N� 2p3p 1P1 [47] 2p 1.0018d [39] 1.00254g PRVRk

O g (3P2) [48] 2p 1.0020d [38] 1.00308h PUVRk

Ne 2p53s1 (3P2) [49] 2p 1.0028d [38] 1.00022e PUVUl,

Q=101.8

Na 3p1 (2P3
2
) [50] 3p 1.0046d [40] 1.00198b PUVUl

NaF, X 1R 3p 1. [51] 1.00745g Q=103.4

NaCl ''

Mg 3s13p1 (3P2) [52] 3p 1.0044d [41] 1.00066b PUVUl,

Q=200.1

Al g (2P3
2
) [53] 3p 1.0049d [40] 1.00042b PUVUl,

Q=140.9

Sÿ g (2P3
2
) [54] 3p 1.00083 f [42] ± PRVRk

Cl g (2P3
2
) [55] 3p 1.00323b [43] ± PRVRk

K 4p1 (2P3
2
) [56] 4p 1.0065d [43] 1.00727b PUVRj

K 3p53d14s1 (4F9
2
) [57] 3p 1.0054b [43] ± PRVRk

Ca 4s13d1 (1D2) [58] 3d 1.0029d [43] PRVRk

a The C��(H) of [3]
b The C��(DF) of Table 1
c Scaled from Li
d Author's own correlated CQR for the system in question
e The C��(DF) for this state of Ne. Note that the ground state value is < 1
f DF for 3p3=2 of Sÿ
g CQR(H)
h C�3P2�(DF)
i Principle Reasonable, Value Unreasonable
j Principle Unreasonable, Value Reasonable
k Principle Reasonable, Value Reasonable
l Principle Unreasonable, Value Unreasonable.

Table 8. Some previous results

for relativistic correction factors

in molecules and solids. Core p
factors given for Zr and Hf

System State Shell Orig. Ref. CQR(DF) CQR(H) CQR(Cas)

HCl X 1R 3p 1.022 [18] 1.0108 1.018 1.017

BrCl X 1R 3p(Cl) 1.035 [20] '' '' ''

HBr X 1R 4p 1.100 [18] 1.0649 1.083 1.076

BrCl X 1R 4p(Br) 1.106 [20] '' '' ''

HI X 1R 5p 1.212 [18] 1.1851 1.209 1.190

Zr hcp 5p 1.252 [23] 1.0916 1.110 1.101

4d 1.048 '' 0.968 1.056 1.047

Hf hcp 6p 1.300 [23] 1.469 1.453 1.409

5d 1.221 '' 0.953 1.214 1.166
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resulting in an EFG at the nucleus due to orbital i of

h/i j q j /ii �A�ÿR�ÿ � A��R��
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2
Ci;p;32;ÿ1

2
ÿ Ci;p;12;

1
2
Ci;p;32;

1
2

� �
4
���
2
p

5
R�ÿ � C2

i;p;32;ÿ1
2
� C2

i;p;32;
1
2

� �h
ÿ C2

i;p;32;ÿ3
2
� C2

i;p;32;
3
2

� �
� 2
5

R��: �38�

Summing over occupied orbitals gives the EFG at the
nucleus.

qmol �
Xocc

i

h/i j q j /ii �39�

In the nonrelativistic case Townes and Dailey [13] or
Cotton and Harris [62] approximate the two-centre
contributions as being proportional to the overlap inte-
grals. Here we simply neglect this part.

To illustrate the method just described and some of
the properties mentioned in this paper a few calculations
will be presented. In particular, the EFG at the heavy
element in the molecules HCl, HBr, HI and HAt illus-
trates the transition from a molecule where the situation
is nonrelativistic to where a relativistic treatment is re-
quired.

4.3 HX and X2

To calculate the EFG using the formulae in Sect. 4.2,
AO coe�cients from an LCAO expansion are required.
One possible method to calculate these coe�cients in a
basis of eigenfunctions of the j and mj operators is to use
relativistic extended HuÈ ckel (REX) and nonrelativistic
extended HuÈ ckel (EHT) calculations (for a review of the
method, see [63]). Non-iterative calculations with the
default parameters, or their QR averages, were used.
These coe�cients were combined with Eq. (39) and the
appropriate integrals in Tables 1±2 to produce the EFGs
of HX and X2 in Table 9.

Here and elsewhere the sign convention is such that
an electron in a r orbital of the nucleus in question
produces a negative EFG. Experimental bond lengths
[64] were used for both relativistic and nonrelativistic
calculations.

Results were calculated at ®ve levels:
1) With relativistic orbitals and integrals i.e. using the
integrals as given in Table 1, with the AO coe�cients
taken from the REX output.
2) With quasirelativistic orbitals and relativistic inte-
grals: A quasirelativistic orbital is achieved by keeping
the total p1

2
� p3

2
population from REX the same but

altering the p1
2

: p3
2
ratio to the quasirelativistic limit.

Fig. 3. The dependence of the q at a Bi nucleus from the hybridization
between 6p� and 6p atomic orbitals ( j � 1

2 and
3
2, respectively, for the

three cases of r, p�1=2� and p�3=2�.

Fig. 4. Coe�cient dependence of individual hybridized contributions
to the 5d q of Au

Fig. 5. Coe�cient dependence of individual hybridized contributions
to the 5f q of U
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3) With relativistic orbitals as taken from the REX
output and the quasirelativistic integrals from Tables 1±
2. A quasirelativistic integral is de®ned as the integral
calculated using R�ÿ and R��, assuming quasirelativistic
orbitals as already de®ned and Eq. (38). The integrals for
r1
2
, p1

2
or p3

2
orbitals are assumed to be equal to what is

calculated using QR r coe�cients.
4) With both integrals and orbitals quasirelativistic.
5) Nonrelativistic integrals, i.e. calculated from Table 1
and AO coe�cients from an extended HuÈ ckel calcula-
tion.

Two di�erent models were actually used. In model A
the REX or EHT Ci were used as such in Eq. (38). In
model B, for the HX molecules, the REX Ci were used
for the bonding r MO, thus introducing both the r hole
and spin-orbit tilting. The p�12� MO was taken as a pure
np orbital, orthogonalized against the r. The p�32� was a
pure p�32� AO.

The results are shown in Table 9. The models A and B
show spin-orbit tilting e�ects of comparable magnitude
but of opposite sign. Preliminary ab initio data [67]
suggest that the latter one is correct. An inspection of
Table 9 shows that the spin-orbit e�ect occurs when the
coe�cients change from QR to R. A further inspection
shows that the changes of the contributions from the
three MOs, r, p�1

2� and p�32�, would cancel for a ®lled np
shell at the halogen. As there is a partial hole in the npr
orbital, due to the chemical bond, causing the entire q in
the Townes-Dailey model, and as that contribution
reaches a maximum with the QR coe�cients, as seen
from Fig. 3, the spin-orbit tilting will lead to a decrease
of that, positive q.

Both models A and B suggest a somewhat unusual,
Z3 behaviour for the tilting e�ect. In the latter case the
ratio qQR=qR is 1.0025, 1.0286 and 1.088 for HCl, HBr
and HI, respectively. Thus this e�ect is expected to be
relevant in q calculations for compounds of the heavier
halogens, such as the quasirelativistic calculations of
KelloÈ and Sadlej [18,19] for HX molecules or of Blaha
and Schwarz [68] for solid X2.

The scalar relativistic e�ects (represented by the dif-
ference between the QR/QR and NR results) are larger
than spin-orbit e�ects up to row 5 �X � I�. At the end of
row 6 �X � At�, the two e�ects are comparable. The
scalar e�ects come from two sources, the increase in the
hrÿ3i integrals and the shift in electron density. Except in
the case of HAt, the di�erence between the NR and QR/

QR result is almost completely due to the ®rst source.
Another possible relativistic e�ect is the change in EFG
caused by a bond-length change. This e�ect is of course
zero in the case of the molecules considered in this sec-
tion as all calculations were at the experimental bond
length.

4.4 Hole theory of Q(An) in actinyl ions

Considering the 6p3
2
�mj � 1

2� semicore shell of the actinyl
ions, OAnOn�, we now ®nd

q � 2

5
R���6p�: �40�

In Ref. [17], 35 was erroneously given.

5 Conclusion

Our ®nal conclusions concerning relativistic correction
factors for EFG calculations are:
a) If the system is a molecule or solid, close to LS
coupling, then the CQR in Tables 1±4 should be taken.
No major di�erences occur between the DF-, H-like or
Casimir ones.
b) For atoms whose EFG arises from a single, jj-
coupled electron or hole, the C for it should be used.
c) For the various J levels of various terms and electron
con®gurations of light atoms with more than one
valence electron (or hole), great care must be exercized
in choosing the right combination of the coe�cients
Cÿ;ÿ, C�ÿ and C��, see Table 6.
d) Furthermore, our results suggest that spin-orbit tilting
e�ects could change the q at iodine in HI by several
percent. These e�ects increase with Z as Z3, as contrasted
with Z2 for the QR terms.
e) DF-level hrÿ3i integrals are reported here for the
elements up to 93Np. These data may be useful for
calibration purposes or in future empirical work.

All these qualitative suggestions should be controlled
by fully relativistic all-electron calculations in the future.

Acknowledgements.We thank the Centre for International Mobility
(CIMO), Finland, for supporting M. Seth, P. PyykkoÈ is a Research
Professor of The Academy of Finland.

Table 9. Some calculated molec-

ular EFGs in Au. R denotes both

relativistic orbitals and integrals

used in the calculations. R/QR

denotes relativistic AO coe�cients

but QR integrals. QR/R is QR

AO coe�cients. QR/QR is QR

AO coe�cients and integrals. NR

indicates a non-relativistic calcu-

lation. NQCC is the nuclear

quadrupole coupling constant (in

MHz) calculated using the R,

EFG and Q from Ref [66]. The

experimental values are from [65]

Molec Nucl R R/QR QR/R QR/QR NR NQCC

Calc Exp

HCla 35Cl 4.058 4.059 4.050 4.051 3.991 )77.71 )67.6
HClb 4.058 4.057 4.068 4.068 4.010

HBra 79Br 9.372 9.377 9.173 9.176 8.670 728.9 530.6

HBrb 9.017 8.988 9.275 9.275 8.734

HIa 127I 15.617 15.663 14.741 14.768 12.881 )2895 )1823
HIb 13.898 13.722 15.121 15.121 12.907

HAta At 37.155 38.418 22.327 23.696 21.087

Ia
2

127I 17.083 17.165 16.724 16.741 14.464 )3167 )2452
Ata2 At 31.646 33.653 32.192 32.600 21.717

a Model A b Model B
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